Comparability graphs and intersection graphs
نویسندگان
چکیده
A function diagram (f-diagram) D consists of the family of curves {i, . . . , ii} obtained from n continuous functions fi : [O, 1] -B R (1 G i d n). We call the intersection graph of D a function graph (f-graph). It is shown that a graph G is an f-graph if and only if its complement 0 is a comparability graph. An f-diagram generalizes the notion cf a permutation diagram where the fi are linear f*mctions. It is also shown that G is the intersection graph of the concatenation of &c permutation diagrams if and only if the partial order dimension of e is ak t 1. Computational complexity results are obtained for recognizing such graphs.
منابع مشابه
Characterisations of intersection graphs by vertex orderings
Characterisations of interval graphs, comparability graphs, co-comparability graphs, permutation graphs, and split graphs in terms of linear orderings of the vertex set are presented. As an application, it is proved that interval graphs, cocomparability graphs, AT-free graphs, and split graphs have bandwidth bounded by their maximum degree.
متن کاملOn cycles in intersection graphs of rings
Let $R$ be a commutative ring with non-zero identity. We describe all $C_3$- and $C_4$-free intersection graph of non-trivial ideals of $R$ as well as $C_n$-free intersection graph when $R$ is a reduced ring. Also, we shall describe all complete, regular and $n$-claw-free intersection graphs. Finally, we shall prove that almost all Artin rings $R$ have Hamiltonian intersection graphs. ...
متن کاملGrid Intersection Graphs and Order Dimension
We study bipartite geometric intersection graphs from the perspective of order dimension. We show that partial orders of height two whose comparability graph is a grid intersection graph have order dimension at most four. Starting from this observation we look at various classes of graphs between grid intersection graph and bipartite permutations graphs and the containment relation on these cla...
متن کاملIntersection graphs associated with semigroup acts
The intersection graph $mathbb{Int}(A)$ of an $S$-act $A$ over a semigroup $S$ is an undirected simple graph whose vertices are non-trivial subacts of $A$, and two distinct vertices are adjacent if and only if they have a non-empty intersection. In this paper, we study some graph-theoretic properties of $mathbb{Int}(A)$ in connection to some algebraic properties of $A$. It is proved that the fi...
متن کاملSome lower bounds for the $L$-intersection number of graphs
For a set of non-negative integers~$L$, the $L$-intersection number of a graph is the smallest number~$l$ for which there is an assignment of subsets $A_v subseteq {1,dots, l}$ to vertices $v$, such that every two vertices $u,v$ are adjacent if and only if $|A_u cap A_v|in L$. The bipartite $L$-intersection number is defined similarly when the conditions are considered only for the ver...
متن کاملThe Simultaneous Representation Problem for Chordal, Comparability and Permutation Graphs
We introduce a notion of simultaneity for any class of graphs with an intersection representation (interval graphs, chordal graphs, etc.) and for comparability graphs, which are represented by transitive orientations. Let G1 and G2 be graphs from such a class C, sharing some vertices I and the corresponding induced edges. Then G1 and G2 are said to be simultaneous C graphs if there exist repres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 43 شماره
صفحات -
تاریخ انتشار 1983